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Abstract

Planning systems often make the assumption
that omniscient world knowledge is available.
Our approach makes the more realistic as-
sumption that the initial knowledge about
the actions is incomplete, and uses experi-
mentation as a learning mechanism when the
missing knowledge causes an execution fail-
ure. Previous work on learning by experi-
mentation has not addressed the issue of how
to choose good experiments, and much re-
search on learning from failure has relied on
background knowledge to build explanations
that pinpoint directly the causes of failures.
We want to investigate the potential of a sys-
tem for efficient learning by experimentation
without such background knowledge. This
paper describes domain-independent heuris-
tics that compare possible hypotheses and
choose the ones most likely to cause the
failure. These heuristics extract informa-
tion solely from the domain operators ini-
tially available for planning (incapable of pro-
ducing such explanations) and the planner’s
experiences in interacting with the environ-
ment. Our approach has been implemented
in EXPO, a system that uses PRODIGY as
a baseline planner and improves its domain
knowledge in several domains. The empirical
results presented show that EXPQO’s heuris-
tics dramatically reduce the number of exper-
iments needed to refine incomplete operators.

1 Introduction

Learning from the environment is a vital capability
for an autonomous agent. The lack of knowledge af-
fects the planner’s capabilities, and learning requires
both detecting a failure and determining a correction
.of the knowledge base. Experimentation is a power-
ful tool for gathering additional information from the

environment that helps determine the appropriate cor-
rection. Previous work on learning from the environ-
ment has not addressed the issue of how to choose good
hypotheses for efficient experimentation [Shen, 1989,
Hume and Sammut, 1991]. Others have tried to re-
duce or eliminate the need for experimentation by re-
lying on causal theories or other types of background
knowledge to build explanations for the failures that
determine what is to be learned [Rajamoney, 1988,
Kedar et ol, 1991, Hammond, 1986]. Learning only
seems feasible when detailed knowledge of the domain
at hand is available. The central issue of the acquisi-
tion and refinement of additional and necessarily com-
plex background knowledge is still far from resolved.
While explanations are powerful, it is not realistic to
assume that they are always available to planners in
any task domain and with enough detail to explain
any possible failure. Qur work was inspired by obser-
vation of human behavior upon failed expectations in
absence of adequate domain understanding. For exam-
ple, if we are presented with a new pen and we fail to
write with it, we would most probably try to vary the
writing action and try to make it work. We might tilt
the point a little. We might try writing on a different
type of paper. We might try to press harder. These
small variations are what we call experiments, perhaps
of a2 more mundane nature than those performed in a
laboratory but nevertheless greatly responsible for our
autonomy and adaptability. Do we reason about fric-
tion between felt tips and types of paper? Do we have
knowledge about how ink flows through a cartridge?
Humans learn through these experiments in many do-
mains. Do we all have theories about everything in
the world that we interact with? More importantly,
are these theories necessary for building systems able
to learn autonomously from the world? The work in
this paper suggests that they are not. We claim that
efficient experimentation is possible without any the-
ory that supports our actions and explains our failures.

This paper presents an efficient experimentation strat-
egy that does not have access to a theory that pro-
duces explanations for failures. Our approach is to
use domain-independent heuristics that extract infor-




(GRIND-INCOMPLETE
(preconditions
(and
(is-a <machine> GRINDER)
(is-a <tool> GRINDING-WHEEL)
(is-a <part> PART)
(holding-tool <machine> <tool>)
(side-up-for-machining <dim> <side>)
(holding <machine> <device> <part> <side>)))
(effects (
(add (surface-finish <part> <side> SMOOTH))
(add (size-of <part> <dim> <value>)))))

Figure 1: An incomplete model of grinding. Notice
that, upon an execution failure, a great deal of back-
ground information would have been needed to ex-
plain that the presence of cutting fluid is important
for grinding.

mation solely from the domain operators initially avail-
able for planning and the planner’s experiences in in-
teracting with the environment. The paper also shows
the performance of these heuristics in their implemen-
tation in EXPOQ, a learning by experimentation capa-
bility within the PRODIGY system [Carbonell et al,
1990] that improves the planner’s knowledge in sev-
eral domains. We begin with a brief description of our
previous work.

2 Learning by Experimentation

Suppose that a planner is given a process planning do-
main with the incomplete operator shown in Figure 1.
This operator models the process of grinding a metallic
surface. A grinder holds a part with some holding de-
vice, and, using a grinding wheel as a tool, it changes
the size of the part along a selected dimension. This
operator may seem correct, but it is incomplete. For
example, it is missing a precondition that states that
the grinder must have cutting fluid. Any plans that
use this operator for grinding will not be useful for
grinding parts in the real world. These plans will in-
clude steps that set up the tool and the part correctly
in the machine, but will not provide the grinder with
cutting fluid. Grinding is an abrasive operation that
generates heat as a result of the friction between the
tool and the part. Cutting fluids cool both the cutting
edges of the tool and the part, aid in chip clearance,
and improve the surface finish. If no cutting fluid if
present to absorb the heat, then the grinding process
will not produce the desired size (the grinder and the
part will overheat instead.) The focus of our research
is to design learning systems that would correct the
operator’s preconditions and effects.

EXPO learns new preconditions through the Operator
Refinement Method [Carbonell and Gil, 1990}, that we
summarize here briefly. Suppose that the system has
build a plan to grind a part to make its length smaller.

Before grinding the part, the system checks that the
preconditions are true in the external world. After
grinding it, the postcondition of GRIND is checked in
the external state. The size of the part has changed
to be of size k, but the surface finish is not as it was
expected. This may be because the known effect that
specifies the new surface finish is wrong, or because
the operator is missing a necessary precondition. This
method addresses the failure by considering the latter
possibility as the working hypothesis first (see [Gil,
1992] for a discussion on the first possibility): that
some unknown precondition is not true in the state
and thus the grinding action is not working as the
given operator specifies. To find out what the missing
precondition is, EXPO considers conditions that were
true in an earlier successful application of the operator
that are not true now. To do so, EXPO retrieves the
description of the past state when the action execution
succeeded before, which contains all the facts that the
planner believed to be true of the world at that point
in time. Among the things that were true in that state,
which may be many, is the fact that the grinder had
fluid when the operation worked in the past!. Exper-
imentation is needed to determine which one of the
differences is relevant for this particular failure. The
experiments will point out that the presence of cutting
fluid is relevant for grinding, and EXPO corrects the
operator to reflect this fact.

A typical set of hypotheses obtained by EXPO in its
process planning domain has 50 to 100 elements, but
for simplicity consider the following subset:

(size-of <part> WIDTH 3)

(size-of <part> LENGTH 7)

(size-of <part> HEIGHT 2.5)
(material-of <part> BRASS)
(has-fluid <machine>)
(surface-finish part26 <side> SAWCUT)
(holding drilll vise2 part26 <side>)
(material-of part26 STEEL)

(is-a drill1l DRILL)

(is-a drill-bit1 DRILL-BIT)
(material-of part37 COPPER)
(has-hole part37 <side>)

As described in {Gil, 1992}, it is important to min-
imize the number of experiments and their require-
ments. For each experiment the planner has to build
a plan to set the environment in a state that satisfies
that many predicates. Apart from the planning effort
involved, the execution of those plans raises non-trivial
issues. Plan execution may use up valuable resources
(including time), produce non-desirable changes in the
environment that are hard to undo, and interfere with
the main goals of the system’s task. If any information
is available to identify a smaller subset of these candi-
dates as more relevant, the experimentation effort may

1For a discussion on the case when the missing condition
is not present, see [Gil, 1992).




be greatly reduced. In particular, if we can devise a
way of ranking the candidates from most relevant to
least, then each candidate can be tested individually.
EXPO follows this strategy by ranking the candidate
hypotheses heuristically.

3 Domain-independent Heuristics for
Efficient Experimentation

EXPOQ’s efficient experimentation is based on heuris-
tics that exploit knowledge about the planning task
to evaluate which predicates in a set of differences are
more likely to have caused the failure. This section
briefly describes these heuristics, summarized in Table
1. Their implementation in EXPO follows. For more
details see [Gil, 1991, Gil, 1992].

One heuristic is locality of actions. The idea behind
it is the following. The fact that there is a steel part
lying somewhere else in the machine shop is not likely
to affect our grinding operation. Facts about the ma-
chine and tool used and the part being ground are
more likely to be relevant to the failure. This heuris-
tic prefers predicates which contain some object that
appears in the operator’s bindings.

Structural similarity takes advantage of the fact a
planning domain reflects the regularities of the actions
needed to do a task. Consider the set of differences
above as possible candidates for a new precondition of
grinding. Many other operators change the size of a
part. Many of them require the use of cutting fluid,
which is in fact the relevant condition for this particu-
lar failure. Only some of them have conditions about
the material of the part. And none of them has any
conditions about the surface finish of a side of the part.
This heuristic prefers predicates that are preconditions
of operators that are similar to grinding according to
some metric.

Generalization of experience takes advantage of the
fact that the conditions needed for the action must
have been present in all past successful executions of
it. In fact, the precondition expression of an operator
can be seen as a concept that represents the states in
which the operator can be executed successfully, as in
[Mitchell, 1978, Mitchell et al., 1983, Langley, 1987,
Langley et al., In press]. Unlike these systems, EXPO
takes the concept that reflects the LHS of the rule as
a heuristic for learning, rather than as the sole basis
for it. Thus, we can bias the generalization language
without worrying about excluding the target concept.
The generalization is used as a heuristic to guide the
experiments, and it does not represent the precondi-
tion expression of the operator (although it is related).
A summary of the planner’s past experience of the ac-
tion’s behavior is useful to guide our search for the
missing condition, because it highlights the conditions
that were common to all the states when the action

was executed before.

3.1 Implementation

To be able to generalize from experience, EXPO needs
to keep track of the execution of actions. Each exe-
cution of an operator is either a success or a failure.
A state in which a successful execution occurs corre-
sponds to a positive instance of the concept, and a
state in which a failure is obtalned is a negative in-
stance. EXPO keeps information about action execu-
tions in stfuations, which are composed of the operator
whose action was executed, the result of the execution
(success or failure), the list of bindings for the operator
variables, and the list of predicates believed to be true
immediately prior to the operator being executed (i.e.,
the state). The situations are used to maintain the
current description of each operator’s preconditions as
a version space [Mitchell, 1978]. The algorithm is bi-
ased to produce conjunctive descriptions of the con-
cept. This bias is appropriate for this application.
The large majority of the precondition expressions in
operators are conjunctions of predicates (or negations
of predicates). This is because actions are easier to
express if their effects under different conditions are
described in separate operators. In this sense, even if
the system aims to learn only conjunctive expressions
of predicates it would be a great win. In fact, even
though PRODIGY allows for a very expressive language
in the preconditions, EXPQ’s generalization only con-
tains the predicates in the preconditions that are part
of the main conjunct. For example, if the precondi-
tion expression of an operator is (and (A B € D (or
E F))), E and F are never included in the generaliza-
tion.

Version spaces implement the heuristic for selecting
hypotheses based on its generalization of experience
as follows. From the set of current candidate hypothe-
ses, only the ones that appear in S (the ones that are
common to all successful situations) and do not appear
in G (since G contains the preconditions, they appear
in the failure state) are selected.

The set of hypotheses selected by the generalization
heuristic is then filtered by the locality heuristic. This
heuristic selects only the hypotheses that contain con-
stants and variables that appear in the bindings of the
failure situation. This new subset of the hypotheses is
then ranked by the heuristic of structural similarity as
we explain now.

All the domain operators are organized by EXPO in
a hierarchy using a simple clustering algorithm [Gil,
1992]. The root node contains all the operators in the
hierarchy. For every node, the operators that are not
in any of its children yet are examined to build a child
node. The expression or expressions that appear in
a larger number of operators? define the child node,

%in the preconditions, postconditions, or both. In our




[ heuristac

descripiion

locality of actions

objects affected by the action are likely to be
present in the operator’s parameters

structural similarity

similar operators are likely to have similar preconditions

generalization of experience

necessary conditions have been present in all past
successful executions of the action

Table 1: Domain-independent heuristics for suggesting better experiments.

and the operators that contain them are transferred
to it. The algorithm works its way down in the tree
until a node is reached that contains only one operator
or all of its operators expressions are included in the
node. When a new condition or effect for an operator
is learned, the hierarchy is updated by recomputing
the children of the node that contains the operator.
Since this clustering algorithm is used as a heuristic,
the emphasis is not so much in the accuracy of the re-
sult as long as it reflects to some extent the structural
similarity behind the domain operators.

EXPO considers first the hypotheses that are selected
by the three heuristics. Then, it considers the ones
that the structural regularity heuristic rejected, then
the ones rejected by the locality heuristic. Last, EXPO
considers the rest of the hypotheses in the initial set.

Determining the missing precondition is done through
iterative experimentation with the ranked list of can-
didate predicates. In EXPO, this process converges if
the missing condition is an observable and non-inferred
predicate that is within a conjunctive expression. If
this is the case, the missing condition is included in the
group of candidate hypotheses, and EXPO eventually
encounters it and learns it through experimentation. If
this is not the case, then the missing condition may be
something else, e.g., a disjunction of some of those con-
ditions, a quantified expression over some predicate, or
an unobserved fact (see [Gil, 1992] for more details).
EXPO does not learn these types of conditions.

Although the algorithms presented here can be made
more sophisticated, we must keep in mind that they
are used to implement heuristics and as such they are
not required to be close to an optimal implementation
of the idea behind them. In their simplicity, the results
in the next section show that they are effective for this
purpose.

4 Results

This section presents EXPOQO’s performance with a
robot planning domain in which 20% and 50% of the
operator’s preconditions were removed randomly. This
means that from all the preconditions of all the oper-

experience with EXPO’s domains, this does not make a
difference in the effectiveness of the structural similarity
heuristic.

ators a percentage was removed, so any operator can
be missing any number of preconditions. We gener-
ated n problems randomly. All of the n problems
were solvable within the time bound that PrRoODIGY
was given. From the set of n solvable problems, we ran-
domly chose m of them to be the training set. The rest
constituted the test set. Notice that both sets are in-
dependent (they do not have any common instances).
Initially, PRODIGY is given the incomplete domain and
EXPO starts running the training problems. For each
problem, EXPO obtains a plan from PRODIGY and
tries to execute it in the external environment®. EXPO
examines any expectation failures and applies the Op-
erator Refinement Method together with the heuris-
tics described in this paper for designing experiments.
After the experiments determine the cause of the fail-
ure, EXPO corrects the operator and uses it for future
plans.

Figures 2 and 3 present the number of experiments
that are required to recover from the failures encoun-
tered by EXPO. The horizontal axis represents subse-
quent failures encountered by EXPO. The vertical axis
shows the cumulative number of experiments needed
until the missing condition is isolated. We show re-
sults with different combinations of the heuristics. We
also plot the number of experiments needed when no
heuristics are used, in which case EXPO tries in se-
quence the candidate predicates. The heuristics used
are represented by a letter: g for generalization, s for
structural similarity, and [ for lecality. A strategy that
does less experiments in the absence of information is
represented in the graph as DC. DC uses a divide-and-
conquer strategy: it recursively splits the candidate
set, using log(n) experiments to isolate the correct hy-
pothesis (n is the number of hypotheses).

Without any of the hypothesis-selection heuristics
many experiments are needed, since the candidate hy-
potheses are tried one by one. Although DC does
a smaller number of experiments than some of the
heuristics used in isolation, we show below that there
are other reasons why it is inefficient. The other curves
show how effective each heuristic is individually and in
combination with others. Each heuristic contributes in
its own way to reducing the number of experiments.

3EXPO was not tested interacting with a physical en-
vironment, but with a software system that simulates one.
The details of this simulation are described in [Gil, 1992].
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Figure 2: Given a domain missing 20% of its preconditions number of experiments that are necessary with all
the combinations of the three hypotheses-selection heuristics: generalization of experience (g), locality (I), and
structural similarity (s). The number of experiments needed is greatly reduced when the three of them are used.
DC represents a divide-and-conquer strategy that does not use the heuristics.

For 20% incompleteness, the three heuristics combined
yield the best results. For 50% incompleteness, gl is
about as good as gls. This is because when the op-
erators are very incomplete similar operators may be
missing the same conditions, so s is not very helpful.

The effectiveness of s improves as new knowledge is
added to the domain.

As we mentioned above, even though DC needs few
experiments, the planner must achieve n—1 additional
goals for each failure (see [Gil, 1992} for more details).
With 20% of the preconditions missing, the number
of additional goals that are necessary to achieve for
experimentation is as follows:

[Jailure [ gls| g [ I | s | none| DC|
5 10 | 168 [ 50 [ 94 | 2156 | 341
10 17 | 172 | 90 | 110 | 332 | 652

Failure indicates the order of the failure in the se-
quence in which they are obtained. With 50% of the
preconditions missing:

[failure [ gls| g | U | s | mone| DC|
5 40 | 172 | 27 | 118 | 205 377
10 71 1276 | 102 | 177 | 460 691
17 89 | 370 | 201 | 325 | 728 | 1217

In summary, the combination of the three heuristics
(generalization of experience, structural similarity, and
locality) reduces dramatically the number of experi-
ments required, and yields the best performance. A
divide and conquer strategy over the set of candidates
requires more experiments that also have much more
complex setups.

5 Conclusion

The work presented in this paper shows that it is pos-
sible for a planner to recover from knowledge-level im-
passes autonomously without need of causal explana-
tions. Our approach uses domain-independent heuris-
tics for choosing good experiments that do not require
any knowledge other than the operators defined for
planning and the planner’s experiences in interact-
ing with the environment. EXPQO’s performance us-
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Figure 3: Given a domain missing 50% of its preconditions number of experiments that are necessary with all
the combinations of the three hypotheses-selection heuristics: generalization of experience (g), locality (1), and
structural similarity (s). The number of experiments needed is greatly reduced when the three of them are used.
DC represents a divide-and-conquer strategy that does not use the heuristics.

ing all the heuristics combined shows that our method
for experimentation is efficient. Additional domain-
independent heuristics would improve this approach.
The structural similarity heuristic can be extended to
exploit other regularities in the domain, including in-
verse relations between operators. The knowledge in-
tensive explanation-based methods would still outper-
form our system, but the problem of acquiring that
additional knowledge remains. It would be interesting
to combine the strengths of both approaches, relying
on background domain knowledge when it exists and
falling back on our heuristics otherwise.
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